
Alternative Model Selection Using Forecast

Error Variance Decompositions in Wholesale

Chicken Markets

Andrew M. McKenzie, Harold L. Goodwin, Jr., and Rita I. Carreira

Although Vector Autoregressive models are commonly used to forecast prices, specification
of these models remains an issue. Questions that arise include choice of variables and lag
length. This article examines the use of Forecast Error Variance Decompositions to guide the
econometrician’s model specification. Forecasting performance of Variance Autoregressive
models, generated from Forecast Error Variance Decompositions, is analyzed within
wholesale chicken markets. Results show that the Forecast Error Variance Decomposition
approach has the potential to provide superior model selections to traditional Granger
Causality tests.
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Vector Autoregressive (VAR) models have be-

come the main workhorse in the econometri-

cian’s stable of techniques for forecasting prices

of related commodities that may be naturally

modeled as a dynamic system. However, in ap-

plied forecasting settings, the econometrician is

typically faced with the unenviable task of

determining which price variables belong in the

system and at what lag length. More often than

not, economic theory provides no specific guide-

lines other than appealing to broad generali-

zations underpinning some underlying supply

and demand model.

The main objective of this article is to em-

pirically evaluate the potential of Forecast Er-

ror Variance Decompositions (FEVDs) derived

from structural VARs to help inform the

econometrician regarding the specification of

forecasting models. Specifically, Directed

Acyclic Graphs (DAGs) are used to identify

structural VARs, and resulting FEVDs are used

to determine if target forecast variables are

endogenous or exogenous to the system. It is

hypothesized that VARs’ forecasts will be su-

perior when target variables are endogenous,

while simple univariate autoregressive (AR)

models will outperform their VAR counterparts

when target variables are deemed to be exog-

enous. Our FEVD forecasting model selections

are also compared with forecasting models that

would have been chosen using Granger Cau-

sality tests.

Wholesale chicken cuts (parts) prices pro-

vide us with a fertile data set to explore this

particular forecasting issue. Goodwin, McKenzie,

and Djunaidi illustrated that significant dy-

namic price relationships exist between some

wholesale chicken cuts and wholesale broilers
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without giblets (WOG). For example, WOG

production shocks may induce price responses

in chicken cuts prices, while demand shocks

generated in broiler cuts markets could lead to

derived demand-induced price responses in

WOG markets. Also, demand shocks in broiler

cuts markets and the WOG market could cause

price substitution effects that would be trans-

mitted across all wholesale markets (Goodwin

et al.). In particular, in this article, we in-

vestigate whether VAR forecasting models

which supposedly exploit such relationships

outperform simple univariate AR forecasting

models.

From a practical standpoint, the analysis of

wholesale chicken cut prices is of interest be-

cause price forecasting is of prime importance

in the U.S. poultry industry. According to the

National Chicken Council (NCC), the form

in which broilers are marketed has changed

markedly over the period 1985–2006. In 1985,

the percentages of broilers marketed as whole,

parts, and further processed were 29.1%, 53.4%,

and 17.5%, respectively. By 2006, these per-

centages had changed to 9%, 44%, and 47% for

whole, parts, and further processed, respectively.

Similarly, the shares of broilers going to food-

service, retail grocery, and further processing

changed from 38%, 44%, and 18% in 1995 to

26%, 20%, and 54% in 2006, respectively (NCC,

2007). Awareness of this market evolution is

paramount in developing an understanding of the

importance of accurate forecasting of wholesale

broiler prices. Although the vast majority of

broiler meat is currently sold under contract to

foodservice and further processors, the prices for

these contracts are benchmarked, to a large ex-

tent, off of the wholesale prices, of which the

Urner Barry (UB) price is the ‘‘gold standard’’

for many in the industry. Therefore, it is essential

for integrator firms (e.g., Tyson Foods, Conagra,

Purdue, Pilgrims Pride, etc.) to accurately fore-

cast chicken cut prices from one to nine

months ahead. It is from such forecasts that

forward contract prices for chicken cuts are

established between integrator firms and buyers

(retail grocery firms, restaurants, and fast food

chains). Inaccurate forecasts lead to either lower

volume sales or reduction in potential profit

margins.

Data

Urner Barry’s Price-Current report publishes

daily wholesale chicken and chicken part pri-

ces, based on sales, bids, or offers for cash

terms, and collected from buyers, sellers, and

brokers. The UB quotes are used by the poultry

industry as standard base prices from which

formula prices are derived. The data set used in

this study consists of monthly averages of UB’s

daily prices of boneless skinless chicken breast

tender out (BSBTO), broiler wings (WING),

bulk leg quarters (LQ), and whole broilers

without giblets 2 1/4 lbs (WOG) for the period

starting January 1989 and ending June 2007.

Descriptive statistics of these price series

measured in cents per pound (¢/lb) are reported

in Table 1; Figure 1 contains a plot of the data

series. BSBTO exhibited the most volatility

followed by WING, while WOG and LQ were

relatively more stable over the sample period.

Augmented Dickey Fuller (ADF) unit root tests

were employed to test if each of the price series

were stationary; the results are presented in

Table 2. The evidence, on balance, suggested

that the four price series were stationary at the

5% level. Hence, the specification of VAR

models, rather than Vector Error Correction

models (VEC) was deemed appropriate.

The data were split into two subsamples: (1)

an in-sample-period (January 1989–December

1999) yielding 132 monthly observations is

used to estimate FEVDs from structural VARs

and select the appropriate forecasting model

(VAR or AR). In addition, in-sample Granger

Causality tests were also used to select between

VAR or AR forecasting models; and (2) an out-

Table 1. Descriptive Statistics of Monthly Av-
erage Prices (¢/lb.) of WOGs and Selected
Broiler Parts for the Northeast U.S. Market
(January 1989–June 2007)

Mean Variance Minimum Maximum

BSBTO 167.02 1118.05 105.00 288.64

WING 66.72 534.06 34.05 136.00

LQ 27.53 52.60 13.76 48.24

WOG 60.17 74.02 46.59 90.00

Source: Urner Barry Publications, Inc.
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of-sample period (January 2000–June 2007)

yielding 90 monthly observations is used to

evaluate the model forecasting performance.

Modeling Approach

Granger Causality tests are frequently used to

determine which variables should be included

in a VAR for forecasting purposes. Although

previous research has explored alternative

multivariate approaches to select subset VAR

forecasting models, where variables may either

be excluded or enter the model with different

time lags (just own lags enter into exogenous

series and lags of other variables enter endog-

enous series) (Hsiao 1979, 1982; Kling and

Bessler), traditional Granger Causality tests

provide the econometrician with a quick and

easy approach to select VAR forecast models.

Therefore in this article we compare our FEVD

generated forecasting models with models de-

termined by Granger tests.

Given a choice of R variables, Xr such that

r 5 1, . . . ,m, . . . ,R, to include in the VAR, a

general test of Granger Causality of the mth

variable on, say, the first variable can be formally

specified by setting up a full model/reduced

model hypothesis test framework. The goal of

the test is to determine whether including the

mth variable in the model improves the esti-

mation of the dependent variable, in this case

the first variable.

Assume that our data set contains S useable

observations of the R variables and note that

t 5 1, . . . ,S. The full model for the above test is

specified as

Figure 1. Plot of Monthly Average Prices (¢/lb) of Boneless Skinless Chicken Breast Tender Out

(BSBTO), Broiler Wings (WING), Bulk Leg Quarters (LQ), and Whole Broilers without Giblets 2

1/4 lbs (WOG) Between January 1989 and June 2007

Table 2. Results of Augmented Dickey-Fuller Test of Null Hypothesis of Existence of a Unit-Root
Given by RATS

Variable

Model Specification

Selected

Test

Statistic

Critical

Value

(a 5 1%)

Critical

Value

(a 5 5%) AIC Lag

Test

Conclusion

BSBTO With constant & linear trend 24.437 23.99 23.43 18 Stationary at 1%

WING With constant & linear trend 25.025 23.99 23.43 12 Stationary at 1%

LQ With constant only 23.175 23.46 22.88 3 Stationary at 5%

WOG With constant & linear trend 24.306 23.99 23.43 1 Stationary at 1%

Note: Model specifications were determined by the Akaike Information Criterion and by testing the statistical significance of the

constant and trend terms.

McKenzie, Goodwin, and Carreira: Forecasting in Wholesale Chicken Markets 229



(1)

X1t 5 p10 1
XU

u51

p1uX1t�u

1
XR

r52

XVr

v51

qrvXrt�v 1 u1t

where p10 is this model’s intercept and p1u re-

fers to the parameter of the uth lag of the first

variable; qrv refers to the parameter of the vth lag of

the rth variable; and u1t is the white noise residual.

The reduced model, that is, the model that does

not include the mth variable, is then specified as

(2)
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u51
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with the parameters and error term defined sim-

ilarly as above. Note that Vr refers to the maxi-

mum lag length of the rth variable included in the

model. The test statistic and its distribution are

(3)

F�5
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Vm

,
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where the null hypothesis is that the mth vari-

able does not have any explanatory power

over the dependent variable, that is, the mth

variable does not Granger-cause the first vari-

able (formally, the null hypothesis is denoted

as H0:pmv 5 0,8v 5 1, . . . ,Vm; the alternative

hypothesis is that at least one of the parameters

is different from zero). SSE1 and SSE2 are the

sum of squared errors of the full and reduced

models, respectively.

Traditional Granger Causality tests when

applied to a large number of candidate varia-

bles, with a large lag structure, require a great

number of observations (Carnot et al.). Alter-

natively, when considering a VAR, FEVDs,

which can account for contemporaneous as

well as lagged relationships between variables,

can better characterize the dynamic relation-

ships between variables and implied causality

and exogeneity. FEVDs provide valuable in-

formation in the model selection process. For

example, a variable that explains a very low

fraction of the target variable is a good candidate

for omission or replacement (Estima, p. 371).

Perhaps the most important advantage of the

FEVD approach over Granger Causality tests is

the information it provides the econometrician

with respect to system dynamics over extended

forecast horizons (Bessler). For example,

FEVDs illustrate the potential contribution of

system variables in helping to forecast a target

variable over a range of forecast horizons. In

practical applications this can be particularly

useful in the model selection process if fore-

casts need to be projected for different forecast

horizons and FEVDs indicate that variable in-

fluence changes over those same horizons. In

contrast, Granger Causality tests select varia-

bles—with predictive power—to be included in

a forecasting model irrespective of the required

forecast horizon. However, if FEVDs are to be

used as guides in building a VAR model useful

for forecasting, accurate estimation of FEVDs

is obviously critical. Given that innovation-

accounting estimation is highly dependent

upon specification of contemporaneous shocks,

it is important to correctly determine contempo-

raneous correlation and causality across variables.

In this paper, as an alternative to Granger

Causality forecast model selection, we turn to

DAG, first described in 1993 by Spirtes, Gly-

mour, and Scheines in their first edition of

Causation, Prediction, and Search. DAG sheds

light on contemporaneous causality across

chicken cuts, and we use this information to

impose a Sims-Bernanke decomposition on the

system (Bernanke; Sims). The advantage of

using DAG is that it is a data-driven method

that is not subjective and can be used to analyze

three or more variables (Awokuse and Bessler).

The rationale and methodology behind DAG

and its relevance to VAR analysis is clearly

described in Awokuse and Bessler. Subsequent

FEVD estimates are then used to determine

optimal specifications of forecast models. For

example if FEVD estimates suggest target

forecast variables are endogenous with respect

to other variables, then a VAR model is pre-

ferred. Conversely, if target forecast variables

are deemed to be exogenous to the system, then

a univariate AR model is preferred. In the latter

case, the inclusion of superfluous variables

(with no predictive power) may result in

less accurate forecasts. Finally, out-of-sample
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forecasting performance of our FEVD gener-

ated VAR and AR models are evaluated using

Diebold Mariano tests.

First, a standard four variable VAR model is

specified as:

(4)

Yt 5 c 1 T 1
XK

k51

b11ðkÞ . . . b1nðkÞ
.

.

.

bn1ðkÞ . . . bnnðkÞ

2
6666664

3
7777775

� Yt�k 1
X11

l51

alDl 1 et,

where Yt represents a 4 � 1 vector containing

the variables BSBTO, WOG, WING, and LQ

in period t ðt 5 1, . . . ,TÞ,c represents a 4 �
1 vector of constant terms, T is a 4 � 1 vector

of trend terms, k indicates the lag order of the

system, bijðkÞ are the parameters we wish to

estimate with n 5 4, Dl are seasonal dummy

variables ðl 5 1, . . . ,11Þ, al are the parameters

of the seasonal dummy variables to be esti-

mated, and finally et is a 4 � 1 vector of seri-

ally uncorrelated random errors (innovations)

with constant variance.

Each equation in the VAR system is esti-

mated using ordinary least squares (OLS).

Model selection in terms of the number of lags

(k) to include in the system is determined using

the Schwartz Bayesian Information Criterion

(SBIC) and likelihood ratio tests in conjunction

with residual diagnostic tests.

Following Bessler and Akleman and Mc-

Kenzie, contemporaneous causal structures are

determined using DAG theory with respect to the

VAR innovation vector et. Directed graph theory

assigns causal flows betweenvariables based upon

partial correlations.1 The DAG analysis is imple-

mented using TETRAD II-Version 3.1 software

(Spirtes et al. 1999). A Sims-Bernanke decom-

position of et is then imposed, based upon the di-

rected graph results of contemporaneous causal

flow between the system variables to identify a

structural VAR model, and standard innovation

accounting procedures are implemented to obtain

FEVDs. This approach avoids having to make

unrealistic assumptions about the contemporane-

ous relationship between variables to achieve

system identification. As noted by Bessler and

Akleman, early work applied Choleski factoriza-

tion, which is a recursive ordering identification.

However, the world might not be recursive, and

incorrectly imposing it would lead to invalid in-

novation-accounting results. It is well known that

FEVD estimates are highly sensitive to variable

ordering when a Choleski factorization is used and

variables are correlated (Estima, pp. 371–72).

The structural VAR FEVDs are computed

from conditional within-sample forecasts for

each of the variables in the system over one to

nine month forecast horizons. The FEVD ex-

plains the relative proportion of the movements

in a sequence due to its own shocks versus

shocks to other variables. If own shocks explain

all of the forecast error variance (FEV) of a

variable, the price series in question may be

considered exogenous to the other variables

within the system. However, if a large propor-

tion of the FEV associated with the sequence of

a particular variable is explained by shocks to

one or more of the other variables, then the

price series in question would be considered

endogenous to the system. The approach also

allows one to draw inferences as to the relative

importance in terms of the magnitude and se-

quence of influence among the system’s vari-

ables, and hence determine the final specifica-

tion of models useful for forecasting chicken

cuts and WOG prices.

Finally, VAR and univariate AR models are

used to estimate one to nine month out-of-

sample forecasts for each of the target forecast

variables (BSBTO, WOG, WING, and LQ).

These models are formally specified as

(5)

Yit5 ci 1 Ti 1
XK

k51

biðkÞ½ � Yit�k

1
X11

l51

alDl 1 eit,

where Yit represents each of the i 5 1 through 4

variables and K is the optimal lag order iden-

tified with the SBIC. Thus each AR(K) model,

1 For an in depth discussion of DAG theory see:
Spirtes, Glymour, and Scheines. Also, Bessler and
Akleman provide a good treatment of DAG and the
identification of structural VARs with respect to farm
and retail prices for pork and beef.
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which is nested by the VAR(K) model, contains

only K lags of the dependent (target forecast)

variable along with a constant term, trend term

and 11 seasonal dummies. In essence the

AR(K) model is simply a restricted version of

the VAR(K) model, and both types of model

can be estimated using OLS.

Forecasting performance is evaluated using

Diebold Mariano tests (DM) based on both

Mean Square Error (MSE) and Mean Absolute

Error (MAE) loss functions. Under the null

hypothesis of the DM test, the forecasts from a

VAR model specification are not different from

those from an AR specification, that is, H0:

VAR forecasts � AR forecasts. Two alternative

hypotheses are considered: (1) VAR forecasts

are preferred to AR forecasts (HA1: VAR

forecasts�AR forecasts), and (2) the converse,

that is, HA2: VAR forecasts � AR forecasts.

Forecast performance is also documented with

respect to Mean Error (ME), MAE, Root Mean

Square Error (RMSE), and Theil’s U Statistic

(Theil’s U). Theil’s U is a unit free measure-

ment ranging from zero to infinity, with unit

value being equivalent to a random walk fore-

cast. Forecasting accuracy increases with lower

ME, MAE, RMSE, and Theil’s U values. Out-

of-sample forecasting performance results are

compared with in-sample exogeneity results

implied by the structural VAR FEVD’s. This

comparison allows us to evaluate the usefulness

of the FEVD approach in selecting forecasting

models. If the optimal model specification se-

lected by FEVD’s is a VAR (AR), and this

model provides superior out-of-sample fore-

casts to the AR (VAR) model, then we may

conclude that the FEVD approach is a useful

tool for choosing forecasting models. Similarly

if our FEVD model selections provide superior

out-of-sample forecasts to Granger Causality

model selections, then we may conclude that

the FEVD approach is preferred to the tradi-

tional Granger Causality approach.

Model Selection Using DAG-Generated

Sims-Bernanke FEVD Results

Preliminary model estimations were performed

on VAR systems incorporating from 1 to 12

lags for each variable. The SBIC and likelihood

ratio test statistics indicated that a parsimoni-

ous VAR system with a lag order of three

months was optimal, thus, in Equation (2), K 5

3. In addition, Ljung-Box Q-statistics indicated

that serial correlation was not a serious problem

for the three lag VAR specification.

Prior to performing standard innovation

accounting procedures to obtain FEVDs, con-

temporaneous causality between system varia-

bles was determined using the DAG analysis

described in the previous section of this article.

Specifically, the DAG analysis is based upon

the contemporaneous correlation coefficients

of the VAR system residuals presented in Table

3. Figure 2 presents the causal flow of con-

temporaneous shocks based upon a 1% signif-

icance level. The results indicate that system

variables are contemporaneously linked, and

the chain of causality is clearly identified with

BSBTO, WING, and LQ shocks each directly

affecting WOG price movements. This is con-

sistent with the premise that demand shocks

generated in broiler cut markets could theo-

retically lead to derived demand-induced price

responses in the WOG market (Goodwin,

McKenzie and Djunaidi).

Although the DAG results provide interest-

ing implications with respect to the relationship

between markets in contemporaneous time,

FEVDs are required to analyze the system dy-

namics and provide insights into forecast

model selection. Thus a second VAR is esti-

mated by imposing a Sims-Bernanke decom-

position of et based upon the DAG results of

contemporaneous causal flow between the

system variables. Table 4 reports Sims-Ber-

nanke FEVDs and standard errors for in-sample

forecasts for periods of one through nine

months ahead. In all cases, as the forecast

Table 3. Contemporaneous Correlation Coeffi-
cients of VAR System Residuals (January 1989–
December 1999)

BSBTO WING LQ WOG

BSBTO 1.000

WING 0.184 1.000

LQ 0.134 0.203 1.000

WOG 0.542 0.382 0.393 1.000
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horizon increases, the standard errors grow, as

would be expected, but tend to level off, im-

plying the system is stationary. Also, standard

errors are much larger for BSBTO and WING

forecasts, which are consistent with the sum-

mary statistics presented in Table 1, and indi-

cate BSBTO and WING price series are more

volatile than WOG and LQ. Results indicate

that BSBTO, WING, and LQ are in large part

exogenous, although WOG innovations appear

to have some influence on LQ for forecast

horizons beyond four months. Interestingly,

WOG forecasts are influenced by all three of

the other variables, which is consistent with

DAG results. In particular, BSBTO has a large

impact on WOG forecasts followed by LQ and

to a lesser extent WING, over all forecast ho-

rizons. It should be noted that interpreting

FEVDs to explain whether a variable is en-

dogenous or exogenous is somewhat subjec-

tive. In applied research it is typical for a var-

iable to explain almost all of its FEV at short

horizons and smaller proportions at longer ho-

rizons (Enders, p. 280). Given that other vari-

ables explain 40% of WOG FEV for the first

two months ahead and 50% or more thereafter

we believe it appropriate to consider WOG to

be endogenous to the system. Sims-Bernanke

FEVDs for longer forecast horizons (not pre-

sented in the paper) show that WOG has some

influence on LQ and WING beyond one year

out. WOG shocks account for 20% of LQ FEV

and 10% of WING FEV from one year

onwards.

The Sims-Bernanke FEVDs suggest that

simple univariate AR models will outperform

VAR models for BSBTO, WING, and LQ

forecasts, for one to nine months ahead. On the

other hand, we would expect one to nine month

ahead WOG forecasts would be better modeled

using a VAR that can take advantage of dy-

namic interactions between WOG and the other

system variables. The Sims-Bernanke FEVD

generated model selections are statistically

tested in the next section using 90 months of

out-of-sample data. Formally, AR(3) forecast-

ing models are compared with VAR(3) models

using DM tests and other criteria (e.g., ME,

MAE, RMSE, and Theil’s U values). The

AR(3) models were specified as in Equation 2

of the modeling approach section.

In contrast to our findings, results presented

in Goodwin, McKenzie, and Djunaidi suggest a

greater level of variable interaction. While we

used FEVDs generated from DAG and a Sims-

Bernanke decomposition, Goodwin, McKenzie,

and Djunaidi used a Choleski decomposition to

orthogonalize the VAR innovations. Their var-

iable ordering (BSBTO, WOG, WING, and

LQ) was based on economic theory and prior

industry knowledge, and reflected the fact that

white meat is the most valuable part, in dollar

terms, of a broiler in the U.S. (Goodwin et al.,

pp. 486–87). To better compare our results and

approaches we replicated Goodwin, McKenzie,

and Djunaidi’s approach using UB prices over

our in-sample period. FEVD results from

this replication are presented in Table 5. With

respect to BSBTO, WING, and LQ, results

from the replication are similar to our Sims-

Bernanke FEVDs. BSBTO, WING, and LQ are

in large part exogenous, although WOG inno-

vations appear to have some influence on

WING and LQ for one to three month ahead

forecast horizons. However, unlike our Sims-

Bernanke results, replication results for WOG

forecasts indicate only BSBTO and WOG itself

influence WOG prices.

In sum, with respect to chicken cuts mar-

kets, our replication FEVD results are more in

line with our Sims-Bernanke FEVD results

than the FEVD results presented in Goodwin,

McKenzie, and Djunaidi. It would appear that

chicken cuts markets have become more ex-

ogenous, irrespective of methodological ap-

proach. It should be emphasized that in spite

of our similar FEVD findings with respect to

chicken cuts markets, we in no way advocate

Figure 2. Directed Acyclical Graph of the

Variables
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the use of Choleski decompositions to choose

forecasting model specifications. As noted

earlier, in general, FEVD estimates are highly

sensitive to variable ordering when a Choleski

factorization is used and variables are corre-

lated. Also, the use of such an approach pre-

supposes that economic theory may be used to

select variable ordering and that variable in-

fluence occurs in a recursive manner. This

is unlikely to be the case in most situations,

and FEVDs generated from DAG-inspired

structural VARs will be preferred to their

Choleski counterparts.

Model Selection Using Granger Causality

Generated Results

Granger Causality tests presented in Table

6—derived from the VAR(3) model and esti-

mated using the in-sample-data—suggest that

WING and BSBTO are exogenous. Thus,

Granger Causality tests, like our Sims-Bernanke

Table 4. In-Sample Forecast Error Variance Decomposition Attributed to Innovations in Respec-
tive Series Using a Sims-Bernanke Decomposition (January 1989–December 1999)

Variable Months Ahead Standard Error BSBTO WING LQ WOG

BSBTO 1 8.734 100.000 0.000 0.000 0.000

2 10.857 98.992 0.002 0.962 0.044

3 12.897 99.146 0.063 0.682 0.109

4 13.666 98.919 0.139 0.766 0.176

5 14.128 98.266 0.364 1.054 0.317

6 14.324 97.390 0.777 1.249 0.584

7 14.462 96.313 1.328 1.421 0.937

8 14.561 95.247 1.870 1.578 1.305

9 14.643 94.274 2.332 1.734 1.660

WING 1 4.208 0.000 100.000 0.000 0.000

2 5.677 0.072 99.552 0.145 0.231

3 6.613 0.129 99.170 0.119 0.582

4 7.322 0.106 98.080 0.119 1.695

5 7.827 0.104 97.276 0.169 2.451

6 8.187 0.143 96.575 0.239 3.043

7 8.459 0.226 95.752 0.324 3.698

8 8.672 0.351 94.832 0.445 4.372

9 8.839 0.495 93.913 0.600 4.992

LQ 1 2.096 0.000 0.000 100.000 0.000

2 3.436 0.832 1.864 97.240 0.063

3 4.040 1.294 2.135 94.778 1.793

4 4.379 1.243 1.981 91.584 5.193

5 4.659 1.105 1.906 88.873 8.115

6 4.921 1.118 2.029 86.703 10.150

7 5.161 1.279 2.277 84.647 11.797

8 5.374 1.539 2.534 82.660 13.267

9 5.561 1.852 2.770 80.860 14.518

WOG 1 2.526 23.625 6.402 8.893 61.080

2 3.470 27.208 3.733 10.072 58.986

3 3.809 35.225 3.485 9.769 51.521

4 3.968 38.542 3.860 9.847 47.751

5 4.067 40.264 4.016 9.827 45.892

6 4.112 40.950 4.043 9.806 45.201

7 4.130 41.239 4.040 9.835 44.885

8 4.137 41.291 4.032 9.926 44.751

9 4.140 41.237 4.025 10.021 44.680
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FEVD approach, suggest that simple univariate

AR models should outperform VAR models for

WING and BSBTO forecasts. Turning to WOG

forecasts, Granger Causality test results indi-

cate that only BSBTO and WOG itself have

predictive power in explaining WOG price

movements. In contrast, recall that Sims-Ber-

nanke FEVDs imply that WOG forecasts are

influenced by all three of the other variables in

addition to WOG itself. Therefore, the Sims-

Bernanke FEVD approach in this case lends

stronger support to the selection of a fully in-

clusive VAR model. Finally, regarding LQ

forecasts, Granger Causality tests endorse the

notion that a VAR forecasting model would be

preferable. Results show that LQ, WING, and

WOG all have power in predicting LQ. Again,

recall that Sims-Bernanke FEVDs suggest LQ

Table 5. In-Sample Forecast Error Variance Decomposition Attributed to Innovations in Respec-
tive Series Using a Choleski Decomposition as Done in Godwin, McKenzie, and Djunaidi (January
1989–December 1999)

Variable Months Ahead Std. Error BSBTO WOG WING LQ

BSBTO 1 8.734 100.000 0.000 0.000 0.000

2 10.933 99.040 0.290 0.003 0.667

3 12.928 99.175 0.231 0.104 0.490

4 13.651 98.904 0.207 0.236 0.653

5 14.065 98.152 0.197 0.589 1.063

6 14.236 97.169 0.196 1.214 1.420

7 14.359 95.978 0.205 2.037 1.780

8 14.454 94.807 0.221 2.853 2.119

9 14.537 93.740 0.239 3.570 2.451

WOG 1 2.668 29.418 70.582 0.000 0.000

2 3.637 32.272 66.752 0.885 0.091

3 4.002 39.928 59.001 0.745 0.326

4 4.185 43.261 55.020 1.034 0.685

5 4.297 44.954 53.164 1.099 0.782

6 4.347 45.615 52.486 1.097 0.803

7 4.366 45.894 52.172 1.096 0.838

8 4.373 45.951 52.047 1.095 0.907

9 4.377 45.940 51.990 1.093 0.977

WING 1 4.209 3.393 11.248 85.359 0.000

2 5.726 4.196 13.829 81.943 0.032

3 6.680 4.555 11.525 83.794 0.126

4 7.393 4.356 9.629 85.647 0.369

5 7.901 4.111 8.561 86.681 0.648

6 8.261 3.867 7.892 87.321 0.920

7 8.531 3.652 7.406 87.714 1.228

8 8.742 3.479 7.054 87.869 1.598

9 8.908 3.353 6.800 87.844 2.004

LQ 1 2.096 1.799 14.509 0.295 83.397

2 3.387 3.664 10.869 0.708 84.759

3 3.979 4.482 8.058 0.530 86.931

4 4.317 4.378 7.175 0.630 87.817

5 4.588 3.924 6.872 0.714 88.490

6 4.835 3.546 6.660 0.671 89.124

7 5.056 3.341 6.619 0.614 89.425

8 5.252 3.294 6.749 0.569 89.388

9 5.425 3.355 6.947 0.534 89.164

Note: Goodwin, McKenzie, and Djunaidi assumed that the causality order of the variables was BSBTO, WOG, WING, and LQ.
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is exogenous and hence support an AR model

selection. In sum, Granger Causality tests and

Sims-Bernanke FEVDs lead to the same con-

clusions with respect to model selection for

WING and BSBTO forecasts.

Out-of-Sample Forecast Results

Out-of-sample forecast summary statistics

presented in Table 7 clearly indicate that, as

expected, the VAR(3) model produces superior

WOG forecasts compared with the AR(3)

model. ME, MAE, RMSE, and Theil U values

are lower for the VAR(3) model across all

forecast horizons. Most importantly, DM test

results presented in the last five columns of

Table 7 (and p values associated with the MSE

loss function presented in column 11) show that

the VAR(3) model forecasts are statistically

more accurate than the AR(3) forecasts, again

across all forecast horizons. These results

translate into cost reductions in terms of WOG

prices as measured by MAE of between 0.145¢/

lb and 0.327¢/lb for lag periods 1 and 3, re-

spectively, if VAR(3) is utilized as the fore-

casting model for contract prices of chicken

rather than the AR(3) model. To put this into

perspective, according to NCC data, in 2005,

U.S. broiler production was estimated at 34,986

million lbs, of which 9% were sold as WOG;

thus, our results would roughly translate into

savings between $4.57 million and $10.3 million.

Turning to LQ forecasts, results are once

again consistent with our a priori expectations

based upon Sims-Bernanke FEVDs. In this

case AR(3) is the preferred model, generating

forecasts with lower ME, MAE, RMSE, and

Theil U values across all forecast horizons.

Similarly DM test results using MSE criteria

demonstrate a statistically significant prefer-

ence for the AR(3) model over one, six, seven,

eight, and nine month ahead forecast horizons.

Although forecasting models cannot be differ-

entiated at conventional significance levels for

two, three, four, and five month horizons, the

AR(3) model is preferred at 0.15, 0.18, 0.16,

and 0.11 levels, respectively, using the MSE

criteria. In this case, using the AR(3) model to

forecast prices for LQ for contracting purposes

results in cost reductions of between 0.145 and

0.372 ¢/lb in lag periods 1 and 7/9, respectively,

as measured by MAE.

Results are mixed with respect to BSBTO

forecasts. For shorter forecast horizons (rang-

ing from one to five months ahead) DM test

results reveal the AR(3) model outperforms the

VAR(3) model by between 0.402¢/lb and

1.371¢/lb in lag periods 1 and 4, respectively,

as measured by MAE, which is consistent with

Sims-Bernanke FEVDs. However, for the lon-

gest forecast horizons (eight and nine months

ahead) VAR(3) is the preferred model by about

1.40¢/lb as measured by MAE based upon DM

tests. In terms of ME, AR(3) forecasts provide

superior forecasts over all horizons, but with

respect to other criteria (MAE, RMSE, and

Theil U) there is little difference between

models.

As regards WING forecasts, it is impossible

to distinguish between the two forecasting

models irrespective of evaluation criteria.

Recall our Sims-Bernanke FEVD results

showed that WING is exogenous to other sys-

tem variables, suggesting that an AR(3) fore-

casting model should outperform a VAR(3)

model. Although this is not the case, clearly

taking account of dynamic interactions be-

tween system variables by using a VAR(3)

Table 6. Granger Causality Test Results Given by RATS

Dependent

Variable

BSBTO F-Statistic

(significance)

WING F-Statistic

(significance)

LQ F-Statistic

(significance)

WOG F-Statistic

(significance)

BSBTO 31.407 (0.000) 0.535 (0.659) 1.127 (0.342) 0.093 (0.964)

WING 0.285 (0.837) 123.792 (0.000) 0.410 (0.746) 1.326 (0.270)

LQ 1.119 (0.345) 2.207 (0.092) 241.854 (0.000) 2.311 (0.080)

WOG 2.457 (0.067) 1.339 (0.266) 0.315 (0.814) 19.413 (0.000)
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would not lead to superior out-of-sample

forecasts.

On a final note, it is constructive to compare

our Sims-Bernanke FEVD forecasting model

selections with forecasting models that would

have been chosen using Granger Causality

tests. In other words, does the Sims-Bernanke

FEVD approach contain information beyond

that provided by Granger Causality tests that

would aid the econometrician? Recall that both

Granger Causality tests and Sims-Bernanke

FEVDs lead to the same conclusions with re-

spect to model selection for WING and BSBTO

forecasts. However, the two approaches pro-

vide different modeling selections with respect

to WOG and LQ forecasts. Importantly, out-of-

sample forecasting results for WOG and LQ are

consistent with Sims-Bernanke FEVD model

selections, and hence lend credence to the as-

sumption that Sims-Bernanke FEVDs may well

choose better forecasting models than Granger

Causality tests.

Conclusions

Selection of appropriate time-series forecasting

models, although of paramount importance to

industry econometricians because of the role

accurate prices play in determining a firm’s

profit margins for various products, is fraught

with problems. Typically, without the aid of

any underlying economic model, the econo-

metrician has relied upon Granger Causality

tests to choose which variables should be in-

cluded in a forecasting model. However, these

tests require many observations to choose be-

tween large numbers of candidate variables,

and perhaps more crucially, select variables

independent of forecast horizon. In this paper

we promote an alternative forecasting model

selection tool—Sims-Bernanke FEVDs gener-

ated from DAG-inspired structural VARs. On

balance, out-of-sample forecast results for

chicken cuts and WOG prices indicate that this

approach has much promise and in the case of

WOG, if the poultry industry were to improve

price forecasts with this approach, savings of

between $4.57 million and $10.3 million could

be attained. Out-of-sample forecast results are

fairly consistent with in-sample Sims-Bernanke

FEVD model selections, and indeed the ap-

proach appears to provide superior model se-

lections to traditional Granger Causality tests.

This is not an insignificant finding, particularly

because of the primary role accurately esti-

mated wholesale prices have in determining

eventual contract prices for chicken sold to

foodservice and further processing markets.

Obviously this enthusiasm should be tempered

by the fact that our approach has only been

tested in one market over a specific sample

period. However, results presented in this paper

suggest that further research using the Sims-

Bernanke FEVD forecasting model selection

approach may prove fruitful in other market

settings. Another interesting avenue of future

research would be to compare forecasting per-

formance of Sims-Bernanke FEVD selected

models with Kling and Bessler type subset

VARs

[Received November 2007; Accepted May 2008.]
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